Minggu, 27 Maret 2011

transistor

Transistor


Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

Transistor through-hole (dibandingkan dengan pita ukur sentimeter)

Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Daftar isi

[sembunyikan]

[sunting] Cara kerja semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.

Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.

Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.

Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.

Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).

Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.

Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.

Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.

Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

[sunting] Cara kerja transistor

Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.

Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.

FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

[sunting] Jenis-jenis transistor

BJT symbol PNP.svg PNP JFET symbol P.png P-channel
BJT symbol NPN.svg NPN JFET symbol N.png N-channel
BJT
JFET
Simbol Transistor dari Berbagai Tipe

Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:

  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

[sunting] BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).

Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

[sunting] FET

FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.

FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

bLog saya

Resistor

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Resistor
3 Resistors.jpg
Tiga buah resistor komposisi karbon
Simbol Resistor symbol Europe.svg (IEE, IEC, EU)
Resistor symbol America.svg (US, JP)
Tipe Komponen pasif
Kemasan Dua kaki
Fungsi Menahan arus listrik
Resistor kaki aksial
Tiga resistor komposisi karbon para radio tabung vakum

Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan di antara kedua salurannya sesuai dengan arus yang mengalirinya, berdasarkan hukum Ohm:

\begin{align}V&=IR\\ I&=\frac{V}{R}\end{align}

Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).

Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat diboroskan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.

Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, resistor harus cukup besar secara fisik agar tidak menjadi terlalu panas saat memboroskan daya.Ohm (simbol: Ω) adalah satuan SI untuk resistansi listrik, diambil dari nama George Simon Ohm. Biasanya digunakan prefix miliohm, kiloohm dan megaohm.

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang pita kelima menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.

Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.

Warna Pita pertama Pita kedua Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam 0 0 × 100

Cokelat 1 1 ×101 ± 1% (F) 100 ppm
Merah 2 2 × 102 ± 2% (G) 50 ppm
Oranye 3 3 × 103
15 ppm
Kuning 4 4 × 104
25 ppm
Hijau 5 5 × 105 ± 0.5% (D)
Biru 6 6 × 106 ± 0.25% (C)
Ungu 7 7 × 107 ± 0.1% (B)
Abu-abu 8 8 × 108 ± 0.05% (A)
Putih 9 9 × 109

Emas

× 10-1 ± 5% (J)
Perak

× 10-2 ± 10% (K)
Kosong


± 20% (M)

[sunting] Identifikasi lima pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.

[sunting] Resistor pasang-permukaan

Gambar ini menunjukan empat resistor pasang permukaan (komponen pada kiri atas adalah kondensator) termasuk dua resistor nol ohm. Resistor nol ohm sering digunakan daripada lompatan kawat sehingga dapat dipasang dengan mesin pemasang resistor.

Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:

"334" = 33 × 10.000 ohm = 330 KOhm
"222" = 22 × 100 ohm = 2,2 KOhm
"473" = 47 × 1,000 ohm = 47 KOhm
"105" = 10 × 100,000 ohm = 1 MOhm

Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:

"100" = 10 × 1 ohm = 10 ohm
"220" = 22 × 1 ohm = 22 ohm

Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.

Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:

"4R7" = 4.7 ohm
"0R22" = 0.22 ohm
"0R01" = 0.01 ohm

Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:

"1001" = 100 × 10 ohm = 1 kohm

Untuk resistor jenis carbon maupun metalfilm biasanya digunakan kode-kode warna sebagai petunjuk besarnya nilai resistansi ( tahanan ) dari resistor. Kode-kode warna itu melambangkan angka ke-1, angka ke-2, angka perkalian dengan 10 ( multiflier ), nilai toleransi kesalahan, dan nilai qualitas dari resistor. Kode warna itu antara lain Hitam, Coklat, Merah, Orange, Kuning, Hijau, Biru, Ungu, Abu-abu, Putih, Emas dan Perak. ( lihat gambar 1-b dan tabel 1 ). Warna hitam untuk angka 0, coklat untuk angka 1, merah untuk angka 2, orange untuk angka 3, kuning untuk angka 4, hijau untuk angka 5, biru untuk angka 6, ungu untuk angka 7, abu-abu untuk angka 8, dan putih untuk angka 9. Sedangkan warna emas dan perak biasanya untuk menunjukan nilai toleransi yaitu emas nilai toleransinya 10 %, sedangkan perak nilai toleransinya 5 %.

Wah banyak sekali sulit untuk menghafalnya..!, hmmm.., kalau anda merasa kesulitan menghafal kode warna dari resistor beserta nilainya, coba perhatikan teks yang saya beri huruf tebal diatas. Kalau disatukan akan menjadi sebuah kata yang mungkin mudah bagi anda untuk menhafalnya ( Hi Co Me O Ku Hi B U A P == 0 1 2 3 4 5 6 7 8 9 ). Ok sekali lagi coba anda lihat gambar 1-b dan tabel 1

KODE WARNAAPPLET WARNANILAITOLERANSI
Hitam 0-----
Coklat 1-----
Merah 2-----
Orange 3-----
Kuning 4-----
Hijau 5-----
Biru 6-----
Ungu 7-----
Abu-abu 8-----
Putih 9-----
Emas 0,110 %
Perak 0,011 %

Nah sekarang mari kita mencoba membaca nilai suatu resistor. Misalkan anda melihat sebuah resistor dengan kode warna sebagai berikut : Coklat, merah, merah, dan emas. Berapa nilai resistansi dari resistor tersebut..?. ( Perlu diingat..! : Untuk membaca angka pertama dari kode warna resistor anda harus melihat warna yang paling dekat dengan ujung sebuah resistor dan biasanya untuk angka ke-1,2 dan 3 saling berdekatan sedangkan untuk kode warna dari toleransi agak jauh dari warna-warna yang lain, sekali lagi lihat gambar 1-b dan tabel 1

Untuk membaca kode warna resistor seperti yang dipermasalahkan diatas, kita mulai menerjemahkan satu persatu kode tersebut. Warna pertama Coklat, berarti angka 1, warna kedua warna merah, berarti angka 2, warna ketiga warna merah berarti multiflier, perkalian dengan 10 pangkat 2. kalau diterjemahkan 12 X 10 2 = 12 X 100 = 1200. Berarti 1200 Ohm. dengan nilai toleransi sebesar 10 %. Akurasi dari resistor tersebut berarti 1200 X ( 10 : 100 ) = 1200 X ( 1 : 10 ) = 120. ( he he he, itulah ilmu exacta selalu berhubungan dengan matematika yupsss, padahal saya juga pusing nih ngitung-ngitung yang ginian, ha ha ha.. selingan aja ) jadi nilai sebenarnya dari resistor tersebut adalah maximum 1200 + 120 = 1320 Ohm, sedangkan nilai minimum nya adalah 1200 - 120 = 1080 Ohm. Kenapa demikian ...?. Karena karakteristik dari bahan baku resistor tidak sama, walaupun pabrik sudah mengusahakan agar dapat menjadi standart tetapi apa daya prosesnya menjadi tidak standart. Untuk itulah pabrik menyantumkan nilai toleransi dari sebuah resistor agar para designer dapat memperkirakan seberapa besar faktor x yang harus mereka fikirkan agar menghasilkan yang mereka kehendaki.

Sekarang coba saya kasih soal lalu anda cari nilai nya sendiri, ( buat PR . he he he..., kayak anak SD aja ). Soalnya begini : Didalam sebuah rangkaian saya melihat sebuah resistor jenis carbon dengan warna-warna sebagai berikut ; Merah, Kuning, Hijau dan Perak. Berapa nilai minimum dari resistor tersebut ?.

Di dalam praktek para designer sering kali membutuhkan sebuah resistor dengan nilai tertentu. Akan tetapi nilai resistor tersebut tidak ada di toko penjual, bahkan pabrik sendiri tidak memproduksinya. Lalu bagaimana solusinya..?. Nah...!, seperti yang pernah saya singgung diatas bahwa ilmu exacta selalu berhubungan dengan matematika, maka untuk mendapatkan suatu nilai resistor dengan resistansi yang unik dapat dilakukan dua cara ; Pertama cara SERIAL, dan yang kedua cara PARALEL. ( Wah.., nambah pusing lagi nih..! ). Dengan cara demikian maka masalah designer diatas dapat terpecahkan. Bagaimana cara Serial dan bagaimana pula cara Paralel, untuk lebih jelasnya coba anda perhatikan gambar 1-d.



Cara memasang Resistor cara Serial dan Paralel

Dengan Cara tersebut suatu nilai resistor dapat menjadi unik. Lalu bagaimana menghitungnya ?, Ehmm. mudah saja, untuk cara serial anda tinggal menambahkan saja nilai resistor 1 dan nilai resistor 2. ( R1 + R2 ) . Sedangkan untuk cara paralel anda dituntut untuk mengerti ALJABAR ( wah-wah lagi-lagi matematika ) tapi mudah kok. Kalau ingin mahir Matematika buka saja topik yang membahas khusus tentang matematika di situs ini juga. Ok kembali ke permasalahan. Untuk cara paralel ditentukan rumus sebagai berikut : misalkan kita memparalel dua buah resistor, resistor pertama diberi nama R1 dan resistor kedua diberi nama R2, maka rumusnya adalah : 1/R= ( 1/R1 ) + ( 1/R2 )

Contoh : Kita mempunyai dua buah resistor dengan nilai berikut R1=1000 Ohm , R2=2000 Ohm, bila kita menggunakan cara serial maka didapat hasil R1+R2 1000+2000 = 3000 Ohm, sedangkan bila kita menggunakan cara Paralel maka didapat hasil :

       1 / R = 1 / R1 + 1 / R2        1 / R = (1/1000) + (1/2000)        1 / R = (2000 + 1000) / (1000 X 2000)         1 / R = (3000) / (2000000)        1 / R = 3 / 2000           3R = 2000            R = 2000 / 3            R = 666,7 Ohm -----> Resistor Hasil Paralel. 
silahkan buktikan sendiri dengan persamaan aljabar dalam matematika.
"4992" = 499 × 100 ohm = 49,9 kohm

Dalam kehidupan sehari-hari kita banyak menemui suatu alat yang mengadopsi elektronika sebagai basis teknologinya contoh ; Dirumah, kita sering melihat televisi, mendengarkan lagu melalui tape atau CD, mendengarkan radio, berkomunikasi dengan telephone. Dikantor kita menggunakan komputer, mencetak dengan printer, mengirim pesan dengan faximile, berkomunikasi dengan telephone. Dipabrik kita memakai alat deteksi, mengoperasikan robot perakit, dan sebagainya. Bahkan dijalan raya kita bisa melihat lampu lalu-lintas, lampu penerangan jalan yang secara otomatis hidup bila malam tiba, atau papan reklame yang terlihat indah berkelap-kelip dan masih banyak contoh yang lainnya. Dari semua uraian diatas kita dapat membuktikan bahwa pada zaman sekarang ini kita tidak akan lepas dari perangkat yang menggunakan elektronika sebagai dasar teknologinya.

Revolusi besar-besaran terhadap elektronika terjadi sekitar tahun 1960-an, dimana saat itu mulai ditemukan suatu alat elektronika yang dinamakan Transisor, sehingga dimungkinkan untuk membuat suatu alat dengan ukuran yang kecil dimana sebelumnya alat-alat tersebut masih menggunakan tabung-tabung facum yang ukurannya besar serta mengkonsumsi listrik yang besar. Hanya dalam kurun waktu 10 tahun sejak ditemukan nya transistor, ditemukan sebuah rangkaian terintegrasi yang dikenal dengan IC ( Integrated Circuit ) merupakan sebuah rangkaian terpadu yang berisi puluhan bahkan jutaan transistor di dalamnya. Sehingga kita bisa melihat sebuah perangkat elektronika semakin kecil bentuknya tetapi semakin banyak fungsinya sebagai contoh telephone genggam ( Handphone ) yang anda pakai saat ini dengan telephone genggam yang anda pakai beberapa tahun yang lalu. Yah semua itu berkat revolusi Silikon sebagai bahan dasar pembuatan Transistor dan IC atau CHIP.

Baiklah, sampai disini saja gembar-gembor kita mengenai perkembangan elektronika. Tentunya anda sudah tidak sabar lagi ingin segera mempelajari teknologi elektronika, tapi bagi anda yang masih ingin mengetahui sejarah perkembangan elektronika anda bisa mencarinya dari berbagi sumber lain.

I. KOMPONEN ELEKTRONIKA - RESISTOR

Resistor adalah komponen elektronika yang selalu digunakan dalam setiap rangkaian elektronika karena dia berfungsi sebagai pengatur arus listrik. Dengan resistor listrik dapat didistribusikan sesuai dengan kebutuhan. Tentunya anda bertanya-tanya, apa itu resistor ?, seperti apa bentuknya ?, bagaimana cara kerjanya ?, oops..., nanti dulu saya baru akan menjelaskannya.

Browser Anda tidak support Flash 7
Ilustrasi Arus Air untuk mengetahui cara kerja Resistor

Setelah anda perhatikan animasi tadi, tentunya anda sudah mempunyai gambaran tentang bagaimana prinsip kerja dari sebuah resistor. Yah anda anggap saja arus air yang ada di animasi itu sebagai arus listrik, sedangkan bendungan sebagai resistornya. Jadi bila bendungan 1 kita anggap sebagai resistor 1 dan bendungan 2 sebagai resistor 2, maka besarnya arus tergantung dari besar kecilnya pintu bendungan yang kita buka. Semakin besar kita membuka pintu bendungan semakin besar juga arus yang melewati bendungan tersebut bila ingin lebih besar lagi arusnya, yah tidak usah dipasang bendungannya atau dibiarkan saja, jadi bila kita menginginkan arus yang besar maka kita pasang resistor yang nilai resistansi ( tahanan ) nya kecil, mendekati nol atau sama dengan nol atau tidak dipasang sama sekali dengan demikian arus tidak lagi dibatasi. Nah seperti itulah kira-kira fungsi Resistor dalam sebuah rangkaian elektronika.

Suatu fungsi dalam dunia teknik tentunya mempunyai satuan atau besaran, misalnya untuk berat kita tahu bahwa pada umumnya satuannya adalah "gram", satuan jarak pada umumnya orang memakai satuan " meter ". Nah untuk resistor satuannya adalah OHM, jadi mulai sekarang kita biasakan untuk menyebut besarnya nilai suatu resistor atau tahanan kita gunakan satuan OHM, yang sebenarnya berasal dari kata OMEGA. Maka tidaklah heran bila lambang dari OHM berbentuk seperti tapal kuda orang yunani menyebutnya omega entah kenapa demikian saya juga kurang paham karena saya bukan ahli sejarah he he he . Ok, jadi bila nanti anda melihat rangkaian elektronika lalu disitu tertulis misalnya 470 maka itu adalah sebuah resistor dengan nilai 470 OHM.., paham..!!.

Didalam rangkaian elektronika resistor dilambangkan dengan angka " R " , sedangkan icon nya seperti ini : . Ada beberapa jenis resistor yang ada dipasaran antara lain : Resistor Carbon, Wirewound, dan Metal Film. Ada juga Resistor yang dapat diubah-ubah nilai resistansinya antara lain : Potensiometer dan Trimpot. Selain itu ada juga Resistor yang nilai resistansinya berubah bila terkena cahaya namanya LDR ( Light Dependent Resistor ) dan Resistor yang yang nilai resistansinya berubah tergantung dari suhu disekitarnya namanya NTC ( Negative Thermal Resistance ) agar lebih jelas coba anda perhatikan gambar 1-a, dan animasi berikut ini :

Well its Ok, No problem. Oh iya hampir saja lupa didalam elektronika kita dapat menyebut nilai 1.000 dengan Kilo, 1.000.000 dengan Mega, 1.000.000.000 dengan Giga. Kilo biasa memakai huruf " K " saja, Mega memakai huruf " M " dan Giga memakai huruf " G ", jadi bila kita menyebut 1.000 Ohm maka menjadi 1K Ohm, terus kalau 1.000.000 Ohm menjadi 1M Ohm dan 1.000.000.000 Ohm menjadi 1 G Ohm paham kan. Ada lagi cara menyebut nilai yang tanggung contoh : 1200 Ohm menjadi 1K2 Ohm, 1.900.000 Ohm menjadi 1M9 Ohm. mulai sekarang bila kita menyebut nilai resistor dengan resistansi yang besar gunakan istilah diatas OK. well masih ada lagi nih...., bagaimana kalau 1R2 berapa nilainya...? nah lo ada lagi nih. Biasanya untuk satuan terkecil digunakan istilah " R " jadi kalau 1R2 yah nilainya 1,2 OHM.., gampang kan. Sebagai latihan coba anda tentukan warna dari resistor dengan nilai 1M5, 1K6, dan 1R4.

II. Mengukur Resistor dengan AVR meter
( Ampere, Voltage, Resistance Meter )

Selain cara manual diatas kita juga dapat menggunakan alat untuk mengetahui besarnya nilai resistansi suatu resistor. Alat tersebut dinamakan AVR meter atau kebanyakan orang Indonesia menyebutnya MULTI TESTER. Biasanya alat bantu ini berbentuk kotak dilengkapi dengan jarum penunjuk serta skala untuk membaca nilainya. Ada dua jenis bentuk alat ini yaitu standar dan digital, untuk AVR jenis digital nilainya ditunjukan dengan layar LCD seperti halnya jam tangan yang menggunakan layar LCD. Atau bila anda juga tidak familiar, OK anda lihat saja kalkulator nah seperti itulah penunjuknya kira-kira . ( hehehheh. kalau masih OOT juga liat deh gambar 1d, 1e sama 1f ).


AVR MANUAL

AVR DIGITAL

Cara Mengukur Resistor
dengan AVR

Dengan menggunakan AVR kita bisa langsung mengetahui nilai dari sebuah resistor. Bila jarum AVR mendekati 0 ( kearah kanan ) berarti nilai resistansinya semakin kecil, sebaliknya bila hanya bergerak sedikit mendekati 1000 ( kearah kiri ) berarti semakin besar. Biasanya skala penghitung ditulis per sepuluhan.

Yang menjadi masalah adalah bagaimana cara mengukur resistor yang nilai resistansinya besar sekali, misalnya 10 M Ohm. Coba saja anda ukur dengan AVR..!, anda akan melihat bahwa jarum AVR hampir tidak bergerak atau mungkin tidak bergerak sama sekali. lalu bagaimana cara mengukurnya dengan AVR bila nilai resistornya melebihi 1M OHM..?, Nah sekali lagi anda dihadapkan dengan rumus ( pusing juga nih, pake alat tapi masih pake rumus hahaahha ). Rumusnya adalah hukum OHM yaitu : V = i X R dimana, V = Voltage atau tegangan listrik, i = Kuat arus listrik dan R adalah nilai Resistansinya. Dengan menggunakan persamaan matematika didapat bahwa : R = V : i. Contoh kasus : dirumah kita biasanya tegangan listrik adalah 220 volt, bila kita menggunakan arus sebesar 5 Ampere. maka nilai resistansinya adalah R = V : i ==> R = 220 : 5 ==> R = 44 OHM. Didalam Praktek kita nggak usah pusing-pusing memikirkan rumus tersebut, itu hanya sekedar pengetahuan saja biar anda tambah paham mengenai dasar-dasar elektronika. Nah merajuk dari hukum OHM diatas, maka didalam praktek bila kita ingin mengetahui nilai sebuah resistor dengan AVR tentu saja kita harus menggunakan listrik sebagai alat bantu pengukuran, caranya..? lihat gambar 1 g.

Mengukur Resistor berukuran besar
Cara mengukur Resistor berukuran besar

Perlu diperhatikan bahwa, sebelum mengukur pastikan tombol AVR di set ke tempat yang tepat. contohnya bila kita hanya mengukur resistor dibawah 1K maka arahkan tombol AVR ke skala X 100, bila kita mengukur dibawah 100 Ohm maka arahkan tombol ke X 1 dan untuk mengukur resistor yang besar dengan menggunakan arus listrik, maka tombol AVR kita arahkan ke arah voltage sesuai dengan voltage yang kita gunakan, misalnya kita menggunakan voltage 220 Volt. maka arahkanlah tombol AVR ke tegangan arus bolak-balik (AC) dengan skala 500 Volt AC. Sekali lagi perhatikan baik-baik sebelum melakukan hal ini, sebab bila anda salah menempatkan tombol maka AVR anda sudah dipastikan akan rusak, masih untung kalau tidak meledak hahahahahhhhhaaa. Ingat yah perhatikan baik-baik !!!.

Sekarang coba anda lihat lagi AVR anda...!, nah bergerak kan !!, biasanya bergeraknya sedikit, diujung AVR ada tertera ukuran 1M, 2M dan 10M dengan skala 100 K perbaris. Tanpa anda sadari bahwa cara mengukur resistor dengan ukuran besar, anda juga dapat mengetahui berapa arus listrik yang mengalir dirumah anda coba lagi rumus diatas. Untuk mengetahui arus listrik ( i ) menurut persamaan matematika maka i = V : R.

Baiklah sampai disini pembahasan kita mengenai resistor. bila anda masih belum paham apa yang telah saya uraikan mengenai resistor. anda dapat melayangkan pertanyaan, kritikan, saran dan sejenisnya ke alamat email : support.suryascience@gmail.com, atau anda dapat langsung menuliskannya melalui SSC FORUM. Kita lanjutkan mengenai komponen elektronika lainnya yaitu CAPASITOR pada update mendatang. Terima kasih atas segala atensi, pertanyaan, kritik dan saran terhadap tutorial ini.

"1000" = 100 × 1 ohm = 100 ohm

"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm

Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.